

QUESTION BANK

Subject with Code: (25CS5808) COMPUTING FOR DATA ANALYTICS

Course & Branch: M.Tech CSE

Year & Sem: I-M.Tech & I-Sem

Regulation: R25

UNIT – I

DATA ANALYTICS LIFE CYCLE

1	a) Define Big Data and explain how business analytics uses it for decision-making.	[L1] [CO1]	[5M]
	b) Compare the four types of analytics with suitable business examples.	[L1] [CO1]	[5M]
2	Discuss how industries currently use analytics and how organizations progress to advanced analytics maturity	[L2] [CO1]	[10M]
3	Describe the role of a data scientist, outlining the key skills required and explaining how they collaborate with other team members in an analytics project.	[L2] [CO1]	[10M]
4	a) List the key roles in an analytics project and briefly state what each role contributes	[L3] [CO1]	[5 M]
	b) Analyze how collaboration among these roles ensures project success.	[L3] [CO1]	[5 M]
5	illustrate the phases of the analytics life cycle. Explain why each phase is critical for ensuring reliable	[L4] [CO2]	[10 M]
6	a) What are the major challenges associated with Big Data Explain.	[L4] [CO2]	[5M]
	b) Analyze how challenges affect data processing and decision-making.	[L4] [CO2]	[5M]
7	Discuss the importance of business understanding in the initial phase of an analytics project.	[L1] [CO2]	[10M]
8	Describe the process of data preparation and feature engineering in analytics and justify	[L2] [CO3]	[10M]
9	What is the significance of model development and evaluation in analytics projects? Describe techniques and metrics used to assess model performance.	[L4] [CO1]	[10M]
10	Develop a basic analytics project plan for a selected business issue.	[L6] [CO4]	[10M]

UNIT – II
STATISTICS

1	.Explain and compare different sampling techniques used in statistical data collection.	[L1] [CO1]	[10M]
2	Discuss the methods of data classification and the role of tabulation in presenting data	[L2] [CO2]	[10M]
3	Describe how frequency distributions are constructed and represented using graphical methods.	[L2] [CO2]	[10M]
4	Explain the computation and uses of Arithmetic Mean, Geometric Mean, and Harmonic Mean	[L3] [CO3]	[10M]
5	Describe the calculation and significance of Mode and Median for grouped and ungrouped data.	[L4] [CO3]	[10M]
6	Explain Quartiles, Deciles, and Percentiles and discuss their importance in statistical analysis	[L4] [CO3]	[10M]
7	Discuss the different measures of variation, including Range, IQR, Quartile Deviation, and Mean Deviation	[L1] [CO3]	[10 M]
8	Explain Standard Deviation and Coefficient of Variation and how they help compare variability across datasets.	[L2] [CO2]	[10 M]
9	Describe the concept of skewness and explain how it is measured and interpreted using standard coefficients.	[L5] [CO4]	[10M]
10	Explain moments and discuss how kurtosis is measured and interpreted using central moments.	[L6] [CO5]	[10M]

UNIT – III
PROBABILITY AND HYPOTHESIS TESTING

1	Define a random variable and distinguish between a discrete and a continuous random variable with examples.	[L1] [CO1]	[10M]
2	Explain the purpose of deriving a marginal density function from a joint density function and the process involved.	[L2] [CO2]	[10M]
3	State the probability mass function, mean, and variance for the Binomial and Poisson distributions	[L2] [CO3]	[10M]
4	Explain the conceptual difference between a Probability Mass Function (PMF) for discrete variables and a Probability Density Function (PDF) for continuous variables	[L3] [CO3]	[10M]
5	Explain the key characteristics of a Bernoulli trial and how they relate to the foundation of the Binomial distribution.	[L4] [CO4]	[10M]
6	The time to complete a series of tasks follows a Gamma distribution with $\alpha = 5$ and $\beta = 2$ (tasks/hour). Apply the distribution's properties to find its mean and variance.	[L4] [CO4]	[10M]
7	Explain the process and purpose of "standardizing" a normally distributed random variable.	[L2] [CO3]	[10M]
8	Elucidate the conditions under which the Poisson distribution serves as a good approximation to the Binomial distribution	[L1] [CO4]	[10M]
9	Write the probability density function and the cumulative distribution function for the Uniform distribution over an interval $[a,b]$	[L5] [CO5]	[10M]
10	Explain the relationship between the Cumulative Distribution Function (CDF) and the Probability Density Function (PDF) for a continuous random variable.	[L6] [CO6]	[10M]

UNIT – IV
PREDICTIVE ANALYTICS

1	Differentiate between standard deviation and standard error of the mean.	[L1]	[CO1]	[10M]
2	Evaluate the importance of sampling distribution in hypothesis testing.	[L2]	[CO2]	[10M]
3	Differentiate between Type I and Type II errors with examples.	[L2]	[CO3]	[10M]
4	Explain the properties of a good estimator: unbiasedness and efficiency	[L3]	[CO3]	[10M]
5	Calculate the test statistic for a one-sample z-test.	[L4]	[CO4]	[10M]
6	State the conditions for using t-distribution instead of normal distribution	[L4]	[CO4]	[10M]
7	<p>a) Identify situations requiring F-distribution in statistical analysis.</p> <p>b) Evaluate the limitations of chi-square test with small expected frequencies.</p>	[L1]	[CO3]	[5M]
8	<p>a) Analyze the power of one-tailed versus two-tailed tests.</p> <p>b) Differentiate between correlation and causation.</p>	[L1]	[CO3]	[5M]
9	<p>a) Analyze the advantages of rank correlation with ordinal data.</p> <p>b) Define Spearman's rank correlation coefficient.</p>	[L5]	[CO5]	[5 M]
10	<p>a) Analyze the relationship between R, R² and adjusted R².</p> <p>b) Define multiple correlation coefficient in multiple regression</p>	[L6]	[CO6]	[5 M]

UNIT – V

TIME SERIES FORECASTING AND DESIGN OF EXPERIMENTS

1	Explain how SES gives more weight to recent observations compared to SMA	[L1] [CO1]	[10M]
2	Compare the suitability of SMA versus SES for a trend-stationary time series	[L2] [CO2]	[10M]
3	Differentiate between experimental error and treatment effect in ANOVA.	[L2] [CO2]	[10M]
4	Define the three fundamental principles of Design of Experiments: Replication, Randomization, and Blocking, and state the purpose of each	[L3] [CO3]	[10M]
5	Explain why randomization is crucial in experimental design.	[L4] [CO4]	[10M]
6	Explain the null hypothesis tested in one-way ANOVA	[L4] [CO4]	[10M]
7	Explain the partitioning of total sum of squares in ANOVA.	[L1] [CO4]	[10 M]
8	Explain how Latin Square controls two sources of variation.	[L2] [CO4]	[10M]
9	Analyze the efficiency of factorial designs compared to one-factor-at-a-time experiments.	[L5] [CO5]	[10M]
10	Define 2^k factorial design and its components. and explain the concept of interaction in factorial experiments	[L6] [CO6]	[10M]

Prepared By:

Dr. K.ARUN KUMAR M.Tech, Ph.D.

PROFESSOR

Dept. of CSE/ SIETK.